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7 The research currently sponsored under Grant No. AFOSR-81-0170 consists of e
several distinct and separate activities. The separate research efforts are "
unified by a common theme: the application of optical processing for image -
bandwidth compresssion. Within this common theme, however, the separate
research projects are not completely related to each other. Therefore, this S
report is put together, 1iterally, as a number of independent reports. The ,

separate sections of the report, which follow this section, are intended to be LS
read separately and independently of any other section. Each section has its Rt
own references and 1ts own figure labellings, for example. gt
SEORS

The separate sections of this report, and the research problems dealt with in it?i

each section, are summarized in the following: )
(1) Data compression by multi-spectral staggered sampling, and data ;*i

reconstruction by spatial and spectral 1nterpo]at10n (see Section III of e

r°22[11~ o o

— —— —— = . v<

™ (2) Data compression by optical tomography, with data reconstruction by T
optical convolution and back projection;{see Section IV of report). -

— {3) Adaptive data compression by spatial transformations to create a S

spatially stationary image; (see Section V of report). S

e 2

~~ a4 (4) Improvement of the optical data compression method known as IDPCM , :‘f4
(see Section VI of report). - T
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(I.) Introduction

Grant No. AFOSR-81-0170 has an objective which is well-
summarized by the Grant title: "Feasibility studies of optical
processing for image bandwidth compression schemes." It is the
intent of research sponsored under this Grant to direct investi-
gation into the following issues:

(a) formulation of alternative architechtural concepts

for image bandwidth compression, i.e., the formula-

tion of components and schematic diagrams which
differ from conventional digital bandwidth compres-
sion schemes by being implemented by various

optical computation methods;

(b) simulation of optical processing concepts for image
bandwidth compression, so as to gain insight into
typical performance parameters and elements of system
performance sensitivity;

(c) maturation of optical processing for image band-
width compression until the cverall state of optical
methods in image compression becomes equal to that
of digital image compression.

It is the Tast of these, item (c), which represents the
continuing strategic objective of the efforts being carried on

under Grant No. AFQOSR-81-0170. 1[It is important to remember that

the major attention given to image bandwidth compression has
been for methods most conveniently implemented by digital compu-

tions. As flexible and multipurpose are digital methods, there
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may always be operational circumstances, environments, or con-
il straints where the availability of a different technology is
: important. However, with the concentration upon digital compu-

tations, which has characterized most research on bandwidth

compression, alternative methods in optics have suffered. Thus,
the purpose of research sponsored under this Grant is to serve
as a source of alternatives for future concepts in bandwidth
compression, so that the environment for compression technology

need not be dominated by one methodology.
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(II.) Overview of the Report

The research currently sponsored under Grant No. AFQSR-81-
0170 consists of several distinct and separate activities. The
separate research efforts are unified by a common theme: the
application of optical processing for image bandwidth compres-
sion. Within this common theme, however, the separate research
projects are not completely related to each other. There-
fore, this report is put together, literally, as a number of
independent reports. The separate sections of the report, which
follow this section, are intended to be read separately and in-
dependently of any other section. Each section has its own
references and its own figure labellings, for example.

The separate sections of this report, and the research
problems dealt with in each section, are summarized in the fol-
Jowing"

(1) Data compression by optical tomography, with data
reconstruction by optical convolution and back pro-
jection (see Section III).

(2) Adaptive data compression by modification of a previously
demonstrated technique, IDPCM, to an efficient spatially
recursive scheme (see Section IV).

(3) Adaptive image processing by using spatial transformations

to create a spatially stationary image (see Section V).




(III.) Tomography and the Projection Matrix

Tomography is a procedure which decomposes a two-dimensional image
into a series of one-dimensional projections, each made at a different
angle through the original image. A projection is produced by integrating
the image data in one direction across the image. Along the horizontal

axis, for example a projection is defined by:

o (x) = | Fx,y)dy

-0
where Py is the projection at angle © and f(x,y) is the original image.

Subsequently, either the ccordinate system or the object is rotated and the
next projectior is calculated.

In digital tomography, the summed (integrated) data results are
registered by a orne-dimensional array of discrete senscrs or detectors.
This string of detectors must be large enough to record all of the data at
each of the possible argles. For a square image, the maximum number of
detectors is required at the angles of 45° and 135°; see Figure 1. At
other angles however, the ends of the detector array swing outside of the
image, thus registering artificial zero data. The scalloped ends of the
projectiorn matrix, visible in Figure 2, are the result of these artificial
zeros.

The projection matrix of ary image displays certain corsistent char-
acteristics. As seen in the projection matrix of Figure 2, there is a
sinuscidal design woven into the matrix; this pattern is present in the
projection matrix derived from any image.

Each horizontal line in the projection matrix corresponds to the
projection data gathered by ali_N detectors at one specific angle; a

horizontal line, therefore, is referred to as a data sequence from "within"

o ]
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Figure 1: demonstrates how the number of detectors necessary varies as a
function of projection angle. At a projection angle of 45° (a) seven
detectors are required, but at a projection angle of 0° (b), only five
detectors are reeded; the extra detectors at the endpaints swing out of
the image.

3

Figure 2: Projection matrix or sinogram
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a projection (See Figure 3). Conversely, a vertical line through the

projection matrix represents the data integrated at one detector as it
travels through all M angles; this is referred to as data "across" pro-
jections (See Figure 4).

To reconstruct the original image, filtered back-projection is done.
Each projection first is convolved with a high pass, rho filter. Following
this, the filtered projections are spread back across the image plane at

their criginal angle and then the results from all angles are summed.

Redundancy in a Projection Matrix

The purpose of dats compression techniques is to remove, or at
least reduce, the redundant or correlated information, thereby retaining
only orthogonal or decorrelated data. It is well known that the data in
most images if highly redundant. From this knowledge, one might surmise
that the projection matrix also cocntains a great deal of redundant infor-
mation. To test this, a methcd was devised to measure the entropy in a
projection matrix, both within and across projections. The information

or entrcpy, H, car be calculated using:

He =% P; 1095 % bits (within projections)
i3 e
n 1 . . .
Hy = .10g, = t rojections
d = ZPe; %% bits (across proje )

where n is the number of cells in the data histogram, ©is a specific angle,
d is a specific detector and pg. or p,. is the protability of data being

contained in the ith cell of the histogram,
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Figure 3: The values of the original image (a), integrated along y' are
sensed by each of the detectors along x'; for example, the result at detector
number three is the sum of values in the shaded region of (a). For the
projection argle ea, the results from each detector are placed into the

the projection matrix (b) along a horizontal line.
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Figure 4: A vertical line in the projection matrix (b),e.g., along detector

N number three, represerts, in the criginal image (a), the integrated result
from a sing{e detector (in this example, number three) as it swings through
all possible angles.
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The redundarcy in a line of projection data then can be calculated:

Rg = Hmax - Hg (within) or Ry = H - Hy (across)

where Hmax is the maximum amount of information possible.

Method

The original image, the source of the projection data, was 128x128
pixels in size. For every projection angle, 182 detectors (each detector
being 1 pixel in width) were used and a total of 100 projections were made.

For ease in calculation, the data in the matrix, with an originél range from

0 to 34323, were scaled to a range from 0 to 255. A histogram of data
values was computed for each line in the matrix, The histogram was divided
into 16 cells, each with a width of 16 intensity levels, The maximum
amount of information possible wculd be present if all cells in the histo-

gram were equally probable:

H 16 = 4 bits

max N 1092
Results

Figure 5 shows the redundancy within each projection as a function
of projection angle. The amount of redundancy appears to be strongly
dependent upon the angle of projection. The redundancy is highest near
the angles of 0°,90° and 180° and is lawest near angles of 45° and 135°.
The maximum obtained redundancy of 2.184 (54.6% of the maximum) occurs at
an angle of 0" and the smallest value of 0.0577 (1.4% of maximum) is at

the angle of 135°,
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Figure 5: Redundancy within projections, as a function of projection angle,
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Greater redundancy at certain angles primarily appears to be a function '315£53
of how the tomographic process operates on a square image. Figure 6 shows RO,
why such an effect may occur,

Redundancy across projections is shown in Figure 7. Detectors near

the endpoints of the projection matrix, those that swing out of the image
near argles of 0°,90° and 18C° were excluded from analysis to avoid the ‘C:f*;@

introduction of artificial zero data. The values vary, for the most part

between redundancies of 1 to 2 bits (25-50%) for each detector. if;fisﬂ
R
Compression of Projections using OPCM :"»*zi

Differential pulse code modulation (DPCM) coders operate on the
principle of quantizing prediction error values rather than actual data
values. Based on the recent history of the signal, a predictor X(n)
is made to approximate the actual x(n). Then, rather than quantizing

and storing x(n), the difference:

d(n)=x(n)-%(n)

is quantized and stored. Subsequently, the decoder attempts to recover
the original signal by essentially integrating the quantized differences
between samples. Figure 8 shows a block diagram of the basic closed loop
DPCM system.

For a data sequence x(n) with a normalized autocovariance, eﬁ-» 1,
the variance of the difference signal, which is the input to the quantizer,
is significantly smaller than that of the original data. Since the quant-
ization error variance is directly proportional to the variance of the quant-

izer input, it is possible to lower the quantization bit rate to a specific
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level and maintain the same signal to noise ratio (SNR). Further reductions -
in the bit rate, past the new level, also are possible but at the expense

of the SNR.

The closed loop or feedback-around quantizer diagram of Figure 8
ensures that the quantization errors do not accumulate into subsequent
samples, i.e., the errors should be independent.

There are a variety of prediction schemes which can be used. The f;:fﬁ‘
two used in this study are: -

1. Normalized autocovariance or rho method
-y

-

S 2. Average rate of crange or slope method. o
Prediction Methods ;f¥5iﬁf
For both of the prediction methods, coding of the projection matrix is L

carried out one line at a time. The first value in each line is carried S

througk the system at its full bit rate and the remaining values in the line

are quantized at the reduced rate.
The prediction errors, the input to the quantizer in a DPCM system,

tend to be distributed as a Laplacian (exponential) probability density

(Gray, 1983). Decision and reccnstruction levels have been derived to
minimize the mean square error in quantizing a Laplacian. These levels,

given in Pratt (1978), are used in the quantizer of Figure 8. The mean

square error between the original and decoded values of the projection
matrix were computed for each line and subsequently were averagecd across
lines.

In order to perform DPCM on lines of constant sample size, the scalloped

ends of the projection matrix were trimmed before encoding, producing a




rectangular matrix. The data values which were removed were those
collected by the detectors farthest from the origin, those that swing

out of the image at angles near 0°, 90° and 180°, Tomographic reconstruction

without these data produces a circular image.

Rho Prediction. The Rho method involves a linear predictor of the

form: NS

X(n) = Zhx(n-9) ¢ |
S

and the quantizer input for a first order predictor is:

d(n) = x(n) = h,x(n=1) . 4

1

Taking the square and expected value of the equation above, it can be shown:

where: g, 3 nermall ged

'
0\: = 0': ((‘a hte. T A, ) cnkc covaviance o

To minimize the mean square error, take the partial derivative of the variance

with respect to h] and set it equal to zero.

6\6‘3‘__. o (_ae\«-Ah.\ =0 o
(1AW .
h, = € Lee minimum mse

Estimation of x by this first order predictor assumes that you =
have no other information concerning the expected shape of the projection >
data. The slope method, however, relies on the fact that some general
assumptions can be made concerning the projection matrix,

Slope Method. As mentioned earlier, all projection matrices share
the sinogram pattern. Based on this, it should be possible to make a more
accurate estimate of x based not only on recent signal history but also on

where x Ties in the matrix and on whether DPCM is being carried out within

or across projections,
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The trimmed projection matrix is partitioned into a set of blocks,
see Figure 9. For each block, an estimate is made of the average rate
of change between x(n) and x(n-1), either across or within projections.
This slope value is then used as a predictor in both the coding and decoding

stages:
?(n) = x(n=1) + slope(m,i)

where x(n-1) is contained in the block (m,i) of the matrix. After their
calculation, these slope values are retained for the decoding phase,

consequently adding to the final bit rate for the coded matrix.

Results
Table 1 gives the mean square error for each prediction method ard
- for various tit rates. Before compression, the trimmed projection matrix
| centained values ranging from a minimum of 6776 to a maximum of 34323 with
a mean of 21670. Therefore, a mean square error (MSE) of 100,000., for
example, represents an average error of 317 per element of the matrix.
For the minimum value this represents an average of + 4.7% error, while

for the maximum value, it is an average error of + 0.92%.

Table 1
a) Within Projectiors
Rho Prediction Slope Prediction
MSE bit rate MSE bit rate
54,745 4.09 41,681 4.20
115,784 3.10 74,831 3.21
' 270,901 2.11 158,945 2.22
o 986,390 1.12 483,260 1.23
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Figure 9: Trimmed projection matrix which has been partitioned into a

set of blocks. Each block, fcr example, may be 10x10, meaning 10 angles
Tong and 10 detectors wide.
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Table 1 cont.

A

- b) Across Projections

N Rho Prediction Slope Prediction

L; MSE bit rate MSE bit rate
20,220 4.13 16,176 4,23
80,437 3.14 54,698 3.25
307,745 2.14 228,544 2.25

: 2,540,996 1.15 1,233,708 1.26

'

) Once the compressed prcjections have been decoded, the next step is
to reconstruct the original image by back-projection. The fcllowing
photogrsphs show the image in its original and reconstructed forms after

il being subject to various amounts of data compression and different

i: prediction schemes.

-

b _
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a) original image b) reconstructed image,
no data compression,
16 bits/element in matrix

¢) coding within projections d) coding within projections
4.09 bits/element in matrix 4.2 bits/element in matrix
rho prediction method slope prediction method
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Figure 10 cont. » 19

e) coding within prcjections f) coding within projections ‘®
3.1 bits/element in matrix 3.21 bits/element in matrix
rho predictior method slope prediction method

g) coding within projections _
2.22 bits/element in matrix e
slope prediction method ‘
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Figure 10 cont.
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h) coding across projections i) coding across projections
4,13 bits/element in matrix 4,23 bits/element in matrix
rto prediction method slope prediction method
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®
®
K J
< J) coding across projections k) coding across projections )
3.14 bits/elemert in matrix 3.25 bits/element in matrix Z:5<
rho prediction method slope prediction method ‘
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A post hoc analysis of the error distribution, the input to the
quantizer, was done to determine whether the assumptibn of a Laplacian
distribution was justified. Figure 11 shows the error [d(n)] distributions
resulting from both rho and slope prediction methods. The rho distribution
contains obvious deviations from an exponential, but the slope distribution,
by visual analysis, appears to match ar exponential quite well. The main
differerce between the slope distribution and a theoretical Laplacian
[p(x)= % exp(-aixi)] occurs at the peak of the distribution and in the tails.
The mode of the obtained distribution is lower than expected, while the
tails are somewhat higher. Analysis of the obtained slope distribution
using Pearson's Chi Square Goodress of Fit Statistic, however, indicates
that it cannot be accurately modeled as a Laplacian (p» 0.995). Based on
this finding, the question arises as to whether a better way to quantize
the errors is possible. Preliminary results obtained in arswering that
question suggest that better quantization car be achieved when the decision

and reconstruction levels are extencded further towards the tails of the

distribution,

Figure 12 shows the results of extending the quantizer levels outward.
The quantization for this image was performed manually, by visual aralysis
o7 the histogram. This reconstruction, with a bit rate of 2.1 bits per

element of the projection matrix, appears to be superior to the image of

Figure 10g which is a slightly higher bit rate (2.22 bits); in fact Figure _bf:f

12 seems to be almost comparable to the quality of some images quantized

to approximately 3 bits. Although a sharper image is obtained by adjusting
the quantization levels, a larce amount of noise still appears in the

recanstructed image.
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two prediction methads; a)rho prediction, ) slope prediction.

Figure 11: Distribution of prediction errors, d(n), resulting from the
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Figure 12: Reconstructior from projections quantized by moving decision
and recornstruction levels out toward the tails of the error distribution,
Coding done within projections, bit rate of 2.1 bits/element in matrix
ard slope prediction method was used.
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Conclusion

Tomographic projectiors, originally 16 bit data, can be compressed

to a bit rate of approximately 3.2 bits per element of projection matrix

(a compression ratio of 5:1).and still produce a recogrizable image;

however, the image at this rate is of poor quality and unsuitable for ?j{':l

—— most applications. ?.' I

. i

An improvement in results can be achieved by adjusting the decision ' f

and recorstruction levels of the quantizer. Another possible avenue for R

e improvement would be to employ more sophisticated prediction procedures. 1;-—;‘

However, a fundamertal problem involved in this technique seems to rest
upori the fact that any errors in the decoded projection matrix are

amplified by the filtering dore before back-projection. This high pass

filter is, most likely, the cause of the noisy appearance of the recon- f:i:&;
structed images. Since this filter is an integral part of back-projecting j{f%kiﬁ

RN
tomographic projections, it would appear that, while further research 1f“f'f

l}' into this area may improve the results demonstrated here, the amount of

improvement possible may not be significant enough to warrant the additionel

investigation. ®
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IV.) Background Discussion

;‘ Image data compression methods can be classified in two ;?g
3: basically different categories. One category is processing in f
3? the spatial domain. Another is "transform coding". In the first j;_ .
!- category are those methods which exploit redundancy in the spatial _1 -

data. Redundancy is a characteristic which is related to pre-

i dictability, randomness in the data. For example, an image of

constant gray levels is fully predictable once the gray level of
the first pixel is known. On the other hand, a white-noise random
signal, such as that seen on a TY screen when no program is being i
broadcast, is totally unpredictable and every pixel has to be
stored to produce the image.
Interpoilated difference pulse-code modulation, developed by
Hunt in 1977 [2], is a successful method of data compression in
spatial domain, Since then, several variations of this method
have been developed. Recently, a significant improvement to
IDPCM, named recursive IDPCM, was demonstrated by Hunt and Cao [1].
Recursive IDPCM has two main features:
(1) This is a very efficient image data compression method
which has achieved the result of bit rate below 0.4, and mean-
square error below 0.002.
(2) This method is quite simple and is very economical for
machine cost [1].
o A brief introduction to recursive IDPCM is shown below:
| (1) Take coarse subsample spacing: N (e.g., N=8);

quantize subsamples.
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27 _
(2) Calculate the interpolated value of intermediate point .iiﬁ;u
between two subsamples; use this interpolated value to calculate .-
the difference, and quantize the difference. S;."
(3) Use the intermediate interpolated value added to the Z; =
quantized difference to calcualte a pair of intermediate inter- f',
}' polated values with its neighbor two subsamples, etc. f:ﬁ;
ﬁ;_ A mode is defined as: S, 0I, D2, D3, where S is the number ?iP
of bits for quantizing subsamples, and 0I, D2, and D3 are numbers _.
of bits for quantizing differences. But DI, D2, and D3 have dif- S
ferent numbers of bits. For exampie, take coarse subsample - S
spacing N=8, as in the following: ;;TT—
S bits~————1 -
3Abits
/
Q-+ +@® -+ -0
s
®-+-0.+.0
e
O-+-@-+-0
= ]Dl gits] R -
E -D, bits
né 8x8 subimage _ -
— subsamples using S bits quantization ;g_:_

the first set quantized differences using Dy bits

+ @& O
|

— the second set quantized differences using D2 bits

+ — the third set guantized differences using D3 bits

Figure 1.
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As explained above, this method is used to compress an entire
image without regard to the amount of detail in any particular
area. Generally, finer sampling is required in the neighborhoods

of sharp gray-level transitions, while for relatively smooth

regions, coarse sampling is acceptable. Although recursive IDPCM
has a higher data compression ratio and low mean-square error
than other methods, there is still room for improvement.

F One improvement to recursive IDPCM is to use an adaptive

scheme. With this method, an image can be divided into subimages,

where a high bit rate is needed to deal with relatively complex

* subimages but a lower bit rate is sufficient for relatively A

[ simple subimages. Here, the complex subimages are defined as jﬁ{jjf

neighborhoods of sharp gray-level transitions and simple sub-

images as neighborhoods of smooth gray-level transitions. ﬁfffﬂ*

}L?iﬁ

Identification of Subimages :jff;;

it

?..,,,_-d

In order to use an adaptive scheme, we have to detect the C

complexity level of each subimage. "One way to measure the :fal ;

R

redundancy of an image and to compare it to the nominal sz (NXN o X

.- -4

is the size of an image, p is bits of per pixel) bits is the use : >
of the histogram statistics and the associated entropy statistics"[3]. Z’
Entropy represents the amount of information associated with the "

set of coder input values and gives a lower bound on the average

number of bits required to code those inputs. If the set of coder

input levels is WI, W2, W3,...Wm with probabilities pi, p2, p3,...pm,
then it is not possible to code them without distortion using less

than
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Py 1092 Py bits.

- i=1

However, this requires a very large amount of computation,

Some approximation has to be introduced.

Measuring the level of sharp gray-level transitions can be

done by calculating the function: -

N p
Loz (P - pyy)
R & j=1 i=1
% NxN
-
5, where p is the mean intensity of an NxN size subimage, and pij
p-
¢ is the intensity of each pixei in a subimage. But for subimages
a, b, and ¢ shown in fig. 2, we get the same value for R.
O e | +9:-0:0 009
, A L P \ €00 60009
| 7 Qark . - | ‘9-9 o-o-o-aé
s idark/f/'bright ‘;%'/,//_ % ?0?6’096?090,
’ " o s bright ] 9-9°9-9'0 0-9
N A e
- . =bright, 0 = dark

c
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In fact, subimages a and b are in simple categories (low
frequency) and the subimage ¢ is in complex category (high fre-
quency). The more simple an image is, the smaller the differences
are between the image and a value which interpolates it. There-
fore, complexity could be associated with the differences. The

function,

can be used to approximately measure the complexity of a subimage,
where, Pj is an original pixel and Bi is an interpolator of the
subimage. M is the number of differences in a subimage. In
recursive IDPCM, the middle interpolated image between two sub-
samples is subtracted from the original pixel and the first set
of differences are quantized at N] bits. Then the middle inter-
polator added to its quantized difference and the neighboring
subsample S are used to calculate the second set of interpolated
values and their differences. Therefore, several quantization
levels can be used both for the first set differences and second
set differences. Fig. 10, 11, and 12 show that, differences, as
defined above, can represent the complexity of subimages. This

is an effective and feasible method, which is easy to compute.

Quantization

"A quantizer is a device whose output can have only a limited
number of possible values. Each input is forced to one of the

allowable output values. One way to accomplish this is to divide
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Quantizer Iuput Range
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Figure S

In Recursive IDPCM, the typical distribution of differences

is shown in Figure 6, ip(x) T.m*“J
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* .4

L
v

o | ;
: ! — difference

i
i
-40 -20 0 X 20 40

Figure 6 _ff<?«
P( x ) is the probability density function of differences
falling into 4 X range. X is the value of a difference. Elxlﬁﬁ
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the input range into a number of bins as illustrated in Fig. 5.

If an input falls into the Kth bin, the output is the value Q]
corresponding to the center of Ith bin so that each input is

rounded off to the center of the bin into which it falls. A

uniform quantizer is one in which all bin widths are equal. Non-
uniform quantizers allow different bins to have different widths."

Let X represent any input value, and let Qi be the corresponding

output of the quantizer. "If all values of X within the bins are

not equally likely then the squared error (Xi - QJ.)2 must be

weighted by the probability density function p(Xi) "[5].

F (xis X&Xii-AX)

P( X, ) = Lim
i Ax»0 AX

F(xi) represents the number of differences which have values

between [Xi’ X. + AX]. If we choose AX = 1 (because of digital

j
signal), p(Xi) is approximately equal to the probability density
function.

In adaptive IDPCM the quantization strategy is to choose the
quantized levels (Qi) so that they minimize the total quantizer

mean-square error. This error is defined as

n xi+l 5
eé".zj (x-0 %P ax (3)

i=] X
Taking a partial derivate of equation (3) with respect to

Qi gives




L
b PV

xi+l
;;e
-9 = -3 (X = Q, ) P(X) dX = 0 (4)
301 X5
xi+l
jx XP (X) &x
Q.= i (5)
1 x.+1
j i
p (X) dX
x5

Since we have two unknown variables Qiand Xi , we

also take the partial derivatiVE of equation (3) with respect

to X;
dJde X
T _° 5 (x-q, )2 P(X)ax +
9 X S, X x;-1
xi+l
+ g (x - @)% p(xIax =0
X +

and get  (x; - Q; )2 P(X) - (X, =~ Q)2 B(X) = 0

Xi = Q41 =9 - X (6)
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From simultaneous equations (5) and (6)

xi+l

- S XP (X) dx
| Xy (5)

(94— SRR
.. i S
: J P (X) dX SRR
- X. . -

Lo
in‘ Q- =9 X% (6)

optimal quantizer output levels agre achieved, which is shown

in Fig. 7

ﬁi Quantization Input Range

x
p—
x
(v ]

- | T | Ta

Q, Qf‘——-0ptimal Quantizer Output Levels RO

Fig. 7
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Simulations of Adaptive Recursive IDPCM

In Fig. 7, the original image is sampled at 512x512 resolu-
tion with 8-bits per pixel. The image data compression steps were
as follows:

(1) The original image was subsampled at every 8th line and
every 8th pixel. Each subsample was quantized to 6-bits with a
uniform quantization, The maximum and minimum quantization levels
were 256 and 0.

(2) The middle point interpolated pixels were subtracted from
the original pixels, and the differences were optimally quantized
in 3 bits if the mean-square differences in a subimage were larger
than 4.0, (the average error in subsamples caused by quantizing
8-bit original pixels to 6-bit subsamples). Of course, those
differer es were not stored if the mean-square differences in a
subimage were smaller than 4.0.

(3) The subsamples and the quantized middle point differences

were then used to calculate the second set differences. Suitable

thresholds for the mean-square differences in a subimage were

chosen to determine how many bits are being used for quantizations.

0 if R'e Cg g

Ng = 2 if R'e C_

3 if R'e CC _,. )

CS. Cqv and Cc mean simple-detail, medium-detail, and complex- .fij ﬁ
detail subimages. ‘.- -1

(4) The subsamples and quantized differences according to the

s .
tatalee A

R' were used to reconstruch the image. Fig. 8 shows the original
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image, Fig. 9 shows the processed image by using recursive IDPCM,
and Fig. 10 shows the image by using adaptive recursive IDPCM.
Comparing Fig. 9 with Fig. 10, we can see that the details in
Fig. 10 did improve.

The total bit requirements for the images is the sum of bits
for subsamples, differences, and the modes of each subimage.
Since the number of bits for representing modes of each subimage
is very small, these extra bits can be negligible.

total bits = 3x3cN.l + 6xN, + 2x2xN, + 3x12xN

2 3 4

N] = number of subimages of R' > 4.0,N2 = number of total sub-
images, N3 = number of subimages of its R' (the second set dif-
ferences) between 4.0 and 12.0, N4 = number of subimages of R'
(the second set differences) >12.0. In adaptive recursive IDPCM
for the image shown:

Bit Rate of Per Pixel = 0.35259

Mean-Square Error = 0.001798
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Recursive IDPCM BPP=(0.3577296 , MSE=0.0015513
Fig. 9

aAdaptive Recursive IDPCM BPP=0.35259, MSE=0.001798
Fig. 10
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(v.) Applications of Stationary Transform Processing in

Space-Variant Image Processing

This work has focused on three areas: (1) Improved estimates

of local autocovariance statistics for direct implementation of

spatially-adaptive image processing algorithms. (2) Development
j{ of adaptive image restoration algorithms for nonstationary images
'-; degraded by blur and additive noise. (3) Development of adaptive —
image enhancement algorithms for local contrast transformation,

with application to color imagery.

The results of this work are reported in the sections to
follow. In addition, Appendix A gives details of an extension Ef;gf
to the geometric-transform algorithm (see 1982 and 1983 AFOSR Ei;ﬁﬁ
Annual Reports). This computer algorithm is capable of generating ‘fff;

a grid whose cells are of specified area and unspecified shape.
jﬁi The procedure is iterative, producing a better solution after each

iteration, and converging even for quite large differences in

cell area.

Improved Estimates of Local Autocovariance Functions

Qur previous work in this area used the first-order Markov

model for autocovariance functions estimated from image subblocks. ii;iﬂ
First-order parameters were obtained by fitting an exponential ;:‘U
curve to the autocovariance data. Recent tests, however, indicate
that this approach gives highly variant statistical estimates, due
to the inclusion of unreliable high-order lag data in the curve !;_%

fitting process.

.......
-------------------------
............

........................
............
..............



In Appendix B we report results from our experiments to

find useful measures of local image autocovariance parameters
from small subblocks of data. The basis of this work is a new
technique for estimating the correlation parameters of first-
order Markov (nonseparable) exponential autocovariance models.
The method assumes that image data is stationary within NxN-pixel
subblocks. A measure of the usefulness of the ensuing correlation
parameters may be had by observing their correlation with signal
activity within the scene. Subblocks of dimension N=16 are

shown to provide estimates fitting this criteria, even when the
original data is degraded by significant amounts of blur and
noise. This latter fact bodes well for spatially-adaptive image
restoration applications. An application to block-interpolative

data compression is also included in Appendix 8.

Adaptive Image Restoration

The basic concept of stationary transforms in image restora-
tinn is as follows:
. Assuming the image to be degraded by blur and additive
noise, then -
. Estimate the autocovariance parameters by the method
outlined previously.
. Apply geometric transforms to produce stationarity in

correlation Tength.

. Filter the resulting data with, e.g., a Wiener filter

based on the stationary autocovariance distribution.
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. Apply the inverse geometric transform to restore the original
geometry.
This approach is quite feasible foir 1-D data processing, since
the geometric transforms simply translate into straightforward

decimation and interpolation operations. However, we showed in

the 1983 AFOSR Annual Report that the 2-D implementation of the
above steps results in highly distracting artifacts in the form
" of regular patterns of correlated noise. In an attempt to over-
come this limitation we investigated a modification of the above
technique:
. Estimate autocovariance parameters in NxN-pixel subblocks
as before.

. Subsample (decimate) subblocks by a linear scaling factor

proportional to these parameters in order to produce

constancy over all the parameter set.

. Place the new subblocks at the centers of the original
subblocks, and apply a nonadaptive Wiener filter as before.

. Restore the subblocks to their original dimensions by
interpolation.

Figures 1(a) and 1(b) show the results of this procedure for
the case where additive noise is the only source of degradation.
The resulting restoration in Figure 1(b) is encouraging, since
the residual blocking effect can most Tikely be removed by band-
pass filtering incorporated at the same time as the noise-filter-
ing.

We have also investigated several new approaches for adaptive

image restoration using space-varying filters. A simple type of

e
..............
..........................................
..................................................
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space-variant deblurring is implemented via an Adaptive Biased

Laplacian operator. This is a 3x3 kernel given by:

L(x,y) = -1 -1 -1
-1 8+d(x,y) -1 (1)
-1 -1 -1

The deblurring is given by a convolution between L(x,y) and
the image i(x,y). The term d(x,y) is a space-varying bias which
adapts to local image statistics; for example, image variance
var(x,y)-

d(x,y) = f(var(x,y)) (2)
where f( ) is monitonically decreasing.

When var(x,y) is high, for example at large edges we want
L(x,y) to be a high-pass filter. In regions of low variance, we

want L9x,y) to be all-pass. These constraints are satisfied when
d(x,y) = 1 + 9xexp(-fxvar(x,y)2) s >0 (3)

From egqn. (3), we notice that the minimum value of d(x,y) is
unity, and the maximum is 10. In conjunction with f=0.011, this

range is found to give good results.

Normalization of L(x,y) is necessary to avoid large spatial

gain variations during the convolution: the resulting normalized ~g$§y

L

kernel is given by;

L'(x,y) = L{x,y) + d(x,y) (4)

The adaptively-processed image is,

g(x,y) = i(x,y) ** L'(x,y) (5)
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Separating terms in equ. (5), we have;
5 glx,y) = i(x,y) ** (L/d(x,y) + i(x,y) (6)
' where L is the usual 3x3 Laplacian kernel consisting of -1 in all
elements except the center element of 8. An additional weight
L; in the first term prevents saturation, i.e.,
| g(x,y) = 0.3[1(x,y) ** (L/d(x,y))] + 1(x,¥) (7)
Figures 2(a) and 2(b) show an image before and after pro-
cessing with equ. (7). The effect of unwanted noise boosting in

areas of low signal activity is bypassed in this adaptive

approach.
' Adaptive Image Enhancement
A new algorithm for adaptive contrast enhancement is described
il in this section. The aim of the algorithm is to compensate for
nonuniform illumination in scenes, and is based on the often
observed fact that local maps of mean and variance correlate
i. quite strongly in the positive sense. The philosophy of the
- algorithm may be outlined as follows:
If the local mean T(x,y) is high, then leave the image
;* unaltered.
If the local mean 7(x,y) is low, then increase the variations
S about the mean as well as the mean itself.
i; For convenience we will drop the (x,y) image coordinates and
;? represent the algorithm as follows:
;: g = k(i - T) + ky + T (8) ;;é;;:
;;‘ The terms k; and k, are functions of T(x,y). In order to satisfy “?if
2
b
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the algorithm specifications they should exist within the following

Timits:
k]=<‘|;1—=255
<3;7=0
max(k]) = 3
- (9)
k2 = <0 ; 1 = 255
<C;71=0

Functional forms which accomodate these limits are given in a
general form by,

k'l = A(

2ks) * 1 (10)

u;l_l

il
5

c(1 -255)¢t (11)

ko

Optimum values for the constants based on experimental trials
are: A =100, C = 70, t = 2.

The terms k] and k2 are, respectively, the local contrast
and local mean adjustment factcrs. Calculation of local means
1 is achieved by neighborhood averaging over 9x9-pixel windows.

Figures 3(a) & (b) illustrate the effect of this adaptive
image enhancement., Individual red, green, and blue bands were

processed separately to produce the color imagery.

Note

Appendix A was submitted for publication in "Camputers and
Graphics", January 1984,

Appendix B was submitted for publication in IEEE Trans. on
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Acoustics, Speech and Signal Processing, February 1984,
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I. INTRODUCTION.

This paper addresses a simply-posed problem: starting with a simple R
grid of square cells, determine the coordinates of a new grid in which the

area of every cell is specified individually. The shapes of cells in the new

grid are unspecified.
This problem arose in an image processing/remote sensing application [1].
y ﬂi We envisage that the solution may find other applications; for example, in com-
k:—- puter graphics, mapping, integrated circuit fabrication... o .
The flavor of the paper is heuristic. Convergence of the algorithm is

#i;" demonstrated by examples, without proof.

I1. ALGORITHM.

Figure 1 illustrates the broad objectives and constraints of the problem.

Each unit-area cell in the original regular grid is to be expanded to form an d‘_-_;
arbitrary shaped quadrilateral of specified area. No other constraints are

imposed, apart from the obvious ones of contiguity and connectivity in the

—~ PR

transformed grid. Simply stated, we wish to know the coordinates of each J!f_ff

cell in the transformedgrid, relative to an arbitrary set of orthogonal axes {?E

in the x-y plane. If we define a regular grid of control points whose coor- ffff
°

dinates lie at the vertices of each cell, then the problem is to determine how —
such a regular grid is distorted by the many interactions of local area ex- s

pansions centered on each cell.

. Our approach is to superpose the expansion of each cell on the global

D grid, subject to the constraint that each expansion should minimally affect

;:' the relative geometry of other cells. This philosophy is easily explained by

N
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a 1-D illustration. In Figure 2(a) we begin with uniformly spaced control

points. In Figure 2(b) an expansion factor of 2 is applied to the center
of a cell at Xgo resulting in localized stretching. The next expansion
is applied to the neighboring cell, and so on. Continuing this process
yields a 1-D control point array whose coordinates reflect the desired ex-
pansion of cells. No iterations are required. The basic 1-D geometric

transformation can be represented by a spatial displacement ax,

sx= (E-1) 5 (1a)

where E is an "expansion factor," and

>

Compression 0<Ec<1

(1b)

>

Expansion 1<E<=

In the 2-D case, it is not possible to design a transformation which
expands the area of a single cell, while preserving the geometry of all
other cells. What is needed is a technique for reducing the mutual interference
of local cell expansions. Consider a single radial expansion centered on a
single cell in a grid of control points, as shown in Figure 3. Straight-
forward radial expansion takes place within a circle of radius r centered
on the expansion cell. Elsewhere, more remote control points are simply dis-

placed. Hence, we can define a geometric transformation as follows:

ax = x(E-1)
(x2+y

1/2

2) < r (2a)

ay = y(E-1)

]
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where X, y, and & are control point coordinates relative to the center of ex-

pansion (see Figure 3). Nominally, r = d//Z in order to confine expansion

to a single cell as much as possible. The result of applying a linear expan- °

sion of E = 2 to a single cell is shown in Figure 4. Note that the area

expansion of the cell is Ez, or 4, Also, notice that the influence of this
expansion on other cells diminishes at greater distances from the expansion f;f —
center.

We have found that the simple geometric transformation in Eqn. (2) works
well if applied sequentially to all cells in the grid, provided that correction @

factors are used to compensate for the influence of single-cell expansions

on all other cells. Furthermore, iterating the procedure yields the desired

cell ar»as in most cases.

The iterative algorithm proceeds as follows:

Notation
Assume initially an n x m grid of unit-area cells.
Ei.

J
Eij - desired area of Cij

cell (i,j) (Isisn:1sjs<m

desired linear expansion of cij

A,. - actual area of ci.

i at any time.

J P

RN DN B
SA e Lt a el AN At I P




Algorithm:

—START .

:., For i = IORDER (1) -+ IORDER (n) 23§;,€?
. e
P- Measure Ai i |

Form the corrected expansion E = Eij/ﬂiiJ

Apply Eqn. (2) to Cij’ using E.

— END OF LOOPS
RETURN TO START, repeat for K iterations.
o
The arrays IORDER and JORDER are needed to generalize the order in which :
the cells are treated, in other words, each cell is considered only once
during an iteration, but cells may be addressed in any desired sequence. We ‘.- -
will refer to this as the cell sequence. i
NOTE: In applying Eqn. (2), we measure x and y from the specified control L
point to the centroid of Cij' ‘. o

ITI. EXAMPLES*

Most of our examples concern a grid of 16 cells; i.e., 25 control points. '
The arbitrary set of expansions shown in Figure 6 is used throughout the tests.
Several variations of the iterative algorithm are presented in order to demon- Sl
strate the following: ~’
. effect of cell sequence.
« effect of radius r in Eqn. (2).

« existence of an upper limit on E”.

* The figures in this section are not drawn to scale.
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In all tests, we employ an rms expansion error measure for the solution,

given by:

n o m 1/2
e(k) ={ﬁ},—- Lok (el - AUJ?} (3)

]=

where k is the iteration index.

Cell Sequence.

Figure 5 shows the notation for cell sequence. Tests indicate that row-
by-row or column-by-column sequences are superior to, say, circular or spiral
ordering. Indeed, for the particular 16-cell example selected, only the
former yield convergence in the solutions.  Figures 6(a) and (b) show
the transformed cells after 100 iterations using thé fol]owing cell sequences.

(i) Fig. 6(a) - 1 2 3 4,5 6 7 8 9 10 11 12,13 14 15 16.

(i1) Fig. 6(b) - 1 2 3 4,8 7 6 5 9 10 11 12,16 15 14 13.
In both (i) and (ii), the nominal value r = d/vZ was used. Evidently, the
rate of convergence and form of solution is affected by the cell sequence,
although only slightly in this example. However, these effects depend greatly

on the expansion values. In some cases, even the sequence in (ii) does not

yield a solution.

Radius parameter, r.

The nominal value of r = d/¥Z 1is not optimum. Fér most expansion sets,
a value can be found which dramatically increases the convergence rate. For
example, a value of r = v/2d in conjunction with the cell sequence in (i{)
gives a solution with e(100) = 7 x 10'6; i.e., a factor of 100 better than
the nominal r solution. The resulting grid of cells is shown in Figure 6(c).

Clearly, this value of r also leads to a somewhat different solution.
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R T R L VS S e -t
LR LI .

-----------------------------

........
..........................




..................................

Upper limit on expansions.

The series of results in Figures 6(d),(e), and (f) illustrates the
behavior of the algorithm as the expansion applied to one particular cell
is increased. Ultimately, the boundaries of adjacent cells cross, creating )
additional cells (cell nos. 15 and 16 in the example shown). Our experience

is that the maximum allowable expansion(s) is a function of r and the cell

[ sequence.
Some additional interesting results are now discussed. Tests of the
: iterative algorithm using symmetrical expansion sets yield Figures "7(a)

and (b). We observe that the asymmetry of the cell sequence is responsible

for the asymmetry of the solutions. An example using 64 cells is given in

Figure 8.

IV. REMARKS.

We have demonstrated the behavior of an iterative procedure for generating
connected quadrilaterals of specified area. The solutions are nonunique, and
depend on two free parameters - radius r in Egn. (2), and the cell sequence.
Obviously, the nonuniqueness is a consequence of the overdeterminacy of the
problem. Additional constraints on the quadrilateral cells, such as
shape constraints, would reduce the number of solutions. The algorithm pre-
sented here usually converges, even when the expansion set spans a large dynamic

range.
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) Fig.3 2-D Expansion geometry
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. Figure 6(a): r = 4//2; cell sequence (i). e(100) = 8 x 10"4

-4
d4/Y2; cell sequence (ii). e(100) = 7 x 10 .

D Figure 6(b): r

Figure 6: Results of 100 iterations of the algorithm,

v Expansions
’.
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Figure 6(c): r = /2 d; cell sequence (ii). e(100) = 7 x 10~°

Figure 6(d): r = v/2' d; cell sequence (ii). E.,, = 5.0.
e(100) = 4 x 1074,
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Figure 6(e): r = /2 d; cell sequence (ii). E,; = 5.5.

e(100) = 3 x 1079,

Figure 6(f): r = V2 d; cell sequence (ii). E

-3 33 - 6-0.
e(100) = 10 ~.
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Figure 7(a): r = /Z d; cell sequence (i). e(100)= 6 x 107°.

Expansions: 1 2 21, 2 332, 2332, 1221.
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Figure 7(b): r = Y2 4; cell sequence (1) .
Expansions: 1111, 1 321, 1231,1111.
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Fig.8: Result using 8 x 8 grid of expansions
arbitrarily chosen from 1.0, 1.5, 2.0 .
( e(50) = 0.005 )
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APPENDIX B

Estimation of Local Statistics for Digital

Processing of Nonstationary Images




I. INTRODUCTION.

The design of digital image processing algorithms is critically dependent
on the spatial statistics of the imagery. The largest class of algorithms
assurmes stationary statistics; for example, the Wiener filter for least-squares
image restoration (1], and the DPCM coder in data compression (2] . The
main advantage of such algorithms lies in the relative simplicity of their
design and implementation. A drawback, however, is that images are inherently
nonstationary; consequently, the results of processing are suboptimal. The
Wiener filter, for example, is designed from estimates of the cbject (and
noise) autocovariance functions. The question is: how do we cbtain neaningful'
estimates of the acbject covariance function? Typical imagery consists of

large regicns with nearly uniform intensity, plus a relatively few small areas
of high signal activity, such as edges, natural texture, etc. Thersafore,

an estimate of the autocovariance based on the global image data would yield
a rather broad function, since most of the data tends to be highly correlated.
A Wiener filter dasigned from such an estimate would yield a very smooth
rastoration, and important edge detail would remain blurred. Since the
Wiener filtar provides a compromise between noise smoothing and deblurring, .
with a fairly conservative bias towards noise smoothing, a better approach
is to estimate autocovariance from regions of low correlation, i.e. edges,
atc. The resulting restored images exhibit a greater dagree of sharpness,
although they are inevitably noisier than normal least-squares restorations.
Nevertheless, all of these tschniques are handicapped because they do not
account for nonstationarity in the imags data.

A moxre recent class of image processing algorithms accommodates this
ncnstationarity. These algorithms share the characteristic of adapting to,
or tracking, the local variations in image correlation. The resulting pro-

cassors ars space-varying, in accordance with the image nonstationarity.
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tahart [3] has reported a method of implementing local least-squares resto-
ration in which two different autocovariance functions were used, depending
on whether pixels were considered to belong to high or low signal-activity
categories. Anderson and Netravali (4] used a masking function to implement
a form of space-varying noise-smoothing which adapted to local signal details.
A different approach to achieving the same goal is due to Kasturi [S], who
considered the particular case of signal-dapandent noise.(See also Froehlich,
Walkup, and Asher [6].) The benefits of space-varying processing have provad
even more dramatic in the field of image data compression. A review of adapt-

ive coding methods is provided by Habibi [7]. All of the work cited above

depends on some kind of direct estimation of local image statistics. Other
me thods use nonstationary models indirectly; an excellent example is Widrow's
IMS adaptive filter [8].

in order to quantify the nonstationarity of images, and, often, in order
to implement adaptive processing, we require estimates or measurements of
the local image statistiés, specifically the autocovarianca function. The
simplest way of achieving this is to divide the image into N x N - pixel
subblocks. (¥ = 16), and calculate the standard biased or unbiased autocovar-
jance function of each subblock. In effect, each subblock is treated as part
of a wids-sense stationary field. It is well-known, howavar, that reliable
power spectral estimation requires much larger amounts of data. Neverthe-
less, as our work shows, it is possible to cbtain useful maps of local auto~
covariancs parameters if we assume simple parametric autocovariance models.
Specifically, we employ the popular first-order Markov random field model
for image data. Three topics are addressed herein:

¢ agtimation of local autocovariance parameters.
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¢ optimum choice of N.
° correlation between the estimated autocovariance *‘;‘*‘;‘:
(R j
parameters and cbserved signal activity. RN

In the sections to follow, wa review the autocavariance model and discuss

possible ways of estimating the parametars of each local subblock. Examples
are given which illustrats some of the problems encountered when the estimates

Ei are applied to real image data, Finally, we give an example of the value of

local estimatas in adaptive data compressien. _97

IT. LOCAL IMAGE MODELS.
Global wide-sense stationary image data is generally modeled by a first-
order Markov random field with a nonseparable exponential autocovariance func-

tion (9] given by

C(k,8) ma2 exp { =V o X<+ pzfz } (1)

where 02 is the variances. Typical valuas adopted for the correlation parameters

are p = p - = 0.0025, resulting in the simpler isotropic form
b4

1
C(k,2) = 02 0.95 'kt + L (2) .. S
This modal is often assumed in nonadaptive DPCM coding systems.
! A new model for nonstationary image data £(i,j) is given by:
o ctk,:4,3) = a2 (1.9 exp i - v’nlti.j)k‘+ p (13 24} (3)
! :
-3=-
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It is assumed that £(i,3j) is stationary over any N x N - pixel subblock cen-
tered on the coordinates (i,j), and that values of o2, N and p may be
assigned to every location (i,j). (In practice, these values will be
correlated with their neighbors. Later in the paper we will discuss the
implications of this.) The next section discusses procedures for estimating

the spatially-variant autocovariance parameters pl(i,j) and p (i,9).
2

III. ESTIMATION OF LOCAL CORRELATION PARAMETERS.
The starting point for our estimates of p values is the usual biased

autocorralation estimata,

N N
i e L R abll R 4)
ﬁ(kf‘%i'j) = 'Lz' E : Z f(m,n) £(m+k, n+p)
N N N
m=i-= n=3-3

or the biased autocovariance estimate, given by,
1+~ -1 j+%—- le]- 1
doek:1,9) = 25 = = taw -F
N

- - -4 -
m=1i n=3j )

(S5)

(fm +x, n+2) = F (i,3)]

where £ (i,j) is the spatial mean of an N x N -~ pixel subblock centared on (i,j).




Simple parametric estimates.

From Eqn. (3), simple parametric estimates of ol and ¢:o2 are given by:

™ A
C(kl.ozi'j) 2

1

p (1,3) = { ——— 4&n }

1 (kz kl) L_é(kzvoti'j)

(6)
- A
Clo,2,.:1,3) ] 2
P, = { =27 &0 | 1 }
2 2 1 L-C(°AC2=103)

L .

&

r ’ W hen kl = 0 and kz = )], these estimates are equivalent to the first-order

¥

! autoregressive (AR) estimates found in Box-Jenkins time series analysis [10 ],
3 .

For exméle. p1 is then

A
c(°v°3irj) }2

31(1.3') = {2Ln (7)

&(1,0:4,9)

In practice, our constraint that N should be small results in autocovariancs
data with a hiq_h degree of variance, causing the p-estimates to be inaccurate.
Furthermore, the values of &(1,0:1,3) and §(0,1:4,3) can be (and often are)
negative, rendering Eqns. (6) and (7) indeterminate. For example, Figure 2
shows: a map of 31 (i,j) obtained by applying Egn. (6) to the image in Fig-

ure lwithﬁ- 1 and k_, = 3. The map was obtained by computing 31 at every

2
pixel coordinate in the original image, with overlapping subblocks of 16 x 16

Pixels. The large dark areas correspond to negativity in the argument of £n

in Eqn.. (6), caused by negative values of either e(kl,O:i,j) or efk ,0:3,3).

2

At this point we should note the influence of the choice of lags kl and

kz on the estimation quality. Estimation theory tells us that the lowest

order lags provide the most reliable autocovariance data (least variance) [111,
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suggesting that k, = 0, k_ = 1 be the optimum data to use. However, the fﬁj'if -]

1 2
autovariance at zero lag often contains a significant “error" equal to the _ N j

variance of unwanted film-grain noise (assuming the image data originates

from f£ilm). This explains the choice of k, above. The selection of kz in-

1
volves a tradeoff hetween the gresater reliability of low order lag data and

the increased error sensitivity of Eqn. (6) when kz is small. However, this
form of estimation gives poor results for any combination of lag data, as ,it__”‘i'. f;g

Figure 2 demonstrates. RO

Modified parametric estimates.

A new method of p-estimation avoids the indeterminacy problem encountered

in the simple estimation of Eqn. (6). For discussion purposes, estimation is

;_f‘_'. executed in two stages, although the calculations can be combined in a single step.
h First, the image is radiometrically transformed [12],[13] to yield data

exhibiting block-stationary mean and variance. The transform is given by,

g
s - -
g(i,j) = TR Ce(d,3) - £¢4,T + fs | (8)

where o(i,3,) and -f-(i.j) are measured in an M x M - pixel subblock centered

on (i,3). The mean and variance measured over any M x M - pixel subblock

of g(i,j) are the constants ?s and ci, respectively. Typically, M

is 8 pixels. In the second stage, the biased autocorrelation estimates

in Eqn. (4) are used to form the ratios,

ﬁ(kl.t):i.j)

z (k, .,k 310’) =
1515 fex,;0:4,9)
ﬁ:o,z,_u.j)

- 2 (8yel,21,3) =
L 8(0.2,:1,9)

...................................................................
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1f we accept the exponential autocovariance model in Eqn. (1), then

the expected value of z, (say) is (14] ,

k
(o2 exp {x )/ "} + Ep%c - =

2 _-/— 712 .=
(o2 exp {-k, pl}*(t.)Jtl —“1]

(10)

s[zl] -

2
a nonlinear relationship between z

- The expected value of z_ is likewise related to oy Eqn. (10) represents

1 and T which can be implemented in
the form of a look-up table for the purpose of obtaining pl values. (See
Figure 3.) '

>, Figures 4(a) and 4(b) show the distrilutions of z, and z, obtained by

. applying Eqmn. (9) to the autocorrelations of the transformed data g(i,Jj).
The parameters of Eqs. (4), (8) ,(9) and (10) are: N=16, M = 8, ai = 1500,
£, =128, k =1, and k, = 3. The histogram distributions of z, and z,

values are depicted in Pigure 3 relative to the z »J-p' look-up table. Most

(80%) of the values fall between the limits 1.154 and 1.194 corresponding

to the range 0.0 sF € 0.25. This is probably the useful range of p for ap-

plications in image processing and analysis. Values of z ocutside this range

are caused by breakdown of the exponential model in Eqn. (3). For example,
in certain subblocksthe autocovariance est.imate in Egqn. (5) contains strong L

periodic components. Interastingly, the mode of theﬁ-histoqran occurs at

-

(5 - 0.1, corresponding to er;. correlation coafficient exp (—O.lj - O.§ oftan
used in nonadaptive processing. '

A significant advantage of this new p-;stimatbr is that z) and z, are
always positive, thereby avoiding the problem caused by negative autocovari-
ance data in Eqn. (6). PFurthermore, the estimates are much less sensitive
to very small values of autovariance at lag kz, caused by random errors in

the estimation of autocovariancs itself (Eqn. (5)). Also, estimates may

be improved by pre-processing the maps of z, and z, using a smecothing algor-




ithm, thereby reducing the random errors incurred in the model-fitting process.
The effect of neighborhood-averaging is evident in the narrowing of the
histograms of zl and z, also shown in Figure 3. (Values of z outside the
useable range in Figure 3 may be compressed by means of a slightly modified
look-up table. This form of biasing to achieve reduced variance in parameter
estimates is common in spectral estimation.) Application of the previous
look-up tables (Figure 3) produces the maps of /p—l and /Tz- in Figures

5(a) and 5(b). An important feature of these maps, also apparent in examples

later in the paper, is the correlation between the autocovariance parameters

and signal activity. It is interesting to note that maps of local variance =

often employed for signal measures - are not as sensitive to low contrast
detail. The indication is that the nonseparable exponential model for auto-

covariance is worthwhile for describing nonstationary data if applied locally.

IV. BEHAVIOR OF THE ESTIMATOR.

This section examines important practical aspects of the behavior of

m' (9) L

Subblock dimension (N).

Local autocovariance estimation is based on small subblocks of N x N
pixels, each one of which is assumed to belong to a global wide-sense station-

ary random field. Attaining useful resoluticn of the image nonstationarity

requires that N be small, and yet this violates the normal rules of power

spectral estimation. This would suggest, then, that any results of local
estimators are useless. Howaver, the fact that our estimates correlate wall
with observed signal activity suggests the contrary. Further support for

Egn. (9) is now given.
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Consider a one-dimensional window of data which contains a single edge

{see Figure 6(a)). The biased autocovariance estimate from Eqn. (5) is seen
in Figure 6(b) to be piecewise linear. WNatural edges tend to be less abrupt,

resulting in smoother autocovariance functions which, over small lag values,
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f£it the general shape of the exponential in Eqn. (1). Thus, Eqn. (9) is seen

to behave well if N is small enough to traverse single edge-like features.
Edge height (contrast) is irrelevant to the estimat.or.. Figure 7 shows maps

of v p‘ and ¢ pz for the well-known "girl" image for the cases N = 16, and 32, .

The case where N = 16 is near optimum in terms of resolution. (The case - -

N = 8 is excassively noisy.)

Block estimation of parameters.

In certain applications, such as image data compression, single values

of the autocovariance parameters are sufficient for representing blocks of
N x N pixels, rather than values at every pixel. We may think of the esti-

mation procedure as before with an additional parameter I - the increment

between estimates in the (i,3j) image space. (I = 1 in all the preceding
examples.) The estimation of ¥ p values is then posed as follows: .'1;:_'.-‘_1

- Apply Equs. (4), (8), (9) and (i0) to give maps consisting S ."-.,4

of (D/I) x (D/I) values of /-;l_a.nd vr?): . (D is the image .‘

dimension.)

« Take averages over blocks of dimension (N/I) x (N/I) to 1

give a total of (D/N) x (D/N) values of /'B';' and v"p_z' ; . ]

i.e., single values of /—5_1- and /_p: for each N x N - pixel 4

subblock. B
.

Values of I = 4 and N = 16 have been datexmined by trial and error to

7ield results which correlate well with observed signal activity. Greater

ac-ements 7ield insufficient data for the averaging process.
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Estimation from degraded images.

The need to estimate autocovariance parameters from images which are
blurred and noisy arises in the Process of image restoration. Experiments
with images blurred by 3 x 3 - neighborhood averaging and additive Gaussian
noise (standard deviation 5.0) reveal no appreciable change in the maps of
zZ or v’_p— - Even noise levels of two or three times this produce useable

estimates of the autocovariance parameters.

;F V. DATA COMPRESSION APPLICATION.
In this section, we show an applicatiaon of local correlation parameters

to block interpolative coding[lsl ‘We address so-called destination interpola=-"

tion, where the rate of pixels transmitted from image lines is proporticnal

to /Y p . The procedure is as follows:
1

» divide the image into N x N - pixel subblocks.

e estimate v pl for each subblock (see previous section).

. suhsaﬁp].e each subblock by a function r = x/v pl

to yield a subblock of N x N' pixels. (X = max [all / pIJ ‘

N' = N/1). g
X « transmit the subsampled data, plus the values of v p1 .
? » reconstruct the image by interpolation (the inverse of sub-
sampling.

Subsampling along lines is convenient in images which are raster scanned.

Additional compression is possible if across-line redundancy is reduced by

»
.
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o -
‘ subsampling in this direction using /—o: values.
L. Figure 8 shows the girl image after compression ( 8(a) ) and reconstruction
(8(d) ) usian_oT only, The compressed image consists of contiguous blocks -.“
whose width is proportional to J—EI . Data compression is only 30 & , indica- .'_'.-"‘:.
h ting that this particular data contains little spatial redundancy. The degra- :j.ij::,tj ;.'-:‘
r dation of high frequency details associated with nonadaptive interpolative -.
I coding is considerably reduced. Incorporating DPCHM coding would reduce the
‘ data rate by an additional factor of two,
[ ]

vI. CONCLUSIONS.

A simple, useful method for estimating local correlation parameters in
images has been presented. The joint assumptions of stationarity within
NxN-pixel subblocks (N=16) and the nonseparable exponential model for auto-
covariance is seen to work well when judged on the basis of comparisons with
observed signal activity. The resulting maps of autocovariance parameters are
useful in image data compression and, we expect, in adaptive filtering and

restoration.
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